Camel Solar

Our philosophy is very simple at Camel Solar. The target of our solar thermal collectors is to have the highest coefficient of efficiency, maximize the energy produced by solar collectors, and consequently reduce operational energy costs.

The ‘clean energy’ future will be a composition of technologies based on renewable energy sources such as solar, wind, water and biomass, which all play an increasingly important role in the new global energy economy.

Camel Solar brings you some of the most advanced solar thermal systems available on the market today through innovation, research and development.

We are experts in the renewable energy industry and have extensive experience designing and manufacturing top of the range heating and cooling technology.

We work closely with designers, developers and architects to focus on functionality, efficiency and style.

Camel Solar’s thermal systems harness the maximum solar radiation to power both commercial and domestic buildings.

Consumer Benefits
- Green energy source
- Sustainable and renewable
- Self-sufficiency
- Reduced energy bills
- Government incentives
- Require very little maintenance
- Reduced noise pollution
- Modern design features
- Higher Energy Performance Certificate (EPC) rating

Product Features
- Patented selective coatings
- Patented absorber technology
- New innovations in welding techniques
- Seamless and aesthetic design
- Cost-effective
- Easy to install
- Competitively priced
- Simple and reliable technology
- Automatic and controlled heat settings to work with existing systems

Applications – Commercial and Domestic
- Swimming Pools
- Leisure centres
- Hotels and spa facilities
- Offices
- Schools
- Factories and Retail
- Residential Developments
- Breweries
- Dairies
- Solar Cooling

Factors to Consider
- Annual solar radiation
- Number of people relying on the solar thermal system
- Patterns of hot water usage
- Available space
- Roof/facade inclination
- Custom solutions available

Professionals can calculate how best to obtain the results you need at an affordable price, so that more people can access solar energy than ever before.

Solar Energy

Sunlight is by far the largest carbon-free energy source on the planet. Harnessing solar radiation can provide cost-effective, self-sufficient energy and also significantly reduce CO2 emissions.

More energy from the sun strikes the Earth per hour than all other energy consumed on the planet each year, and all the known Earth reserves of coal, oil, natural gas, and uranium combined are more than 10 times smaller than the energy received from sunlight each year.

Solar energy can be harvested in two ways:

2. Solar PV modules directly convert the solar radiation into electricity.

The UK receives approximately 900-1200 kWhrs solar energy per square meter of land area each year.

Using thermal collector systems, there is enough solar radiation in the UK to provide 50%- 60% of its domestic hot water requirements for a whole year.

There is enough direct and diffuse solar radiation to provide heating on cloudy days. In winter, solar energy can relieve the load of boilers or heat pumps, reducing the overall cost of energy bills through stored water.

Camel Solar’s advanced technology systems have been developed to optimise solar energy insolation, absorption and transmission; making this renewable energy source a viable alternative.
Camel Solar Factory

The factory was finished in September 2012.

The factory all together covers more than 2500 m².

The factory has 4 floors:

- 1st floor is where the registers and absorbers are created.
- 2nd floor is where the assembly of the collectors takes place
- 3rd floor is the storage facility
- 4th floor is where the accessories associated with the collectors and raw materials are stored and extra storage if necessary.

The factory’s hot water and heating is run by Camel solar Flat plate, Evacuated tube collectors and backup heat pumps.

There are 18 Flat plate collectors and 3 x 78 Evacuated tube collectors. The collectors are connected to a 7 m³ storage tank which is located under the factory’s first floor.

The hot water in the 7m³ tank supplies the factories under floor heating in the offices and board room areas. The collectors are combined with two fan coil units which supply the production facilities with space heating.

The factory have also installed 9 facade units with a 200 litre tank. The tank is connected to another fan coil unit and has a backup heat pump adding to the space heating in the factory.

These systems together cover all the heating requirements for the building.

Camel Solar Full Plate Absorbers

Using the latest technology, Camel Solar produces the newest absorbers without out visible welding lines and deformation of the absorber which is commonly seen in most solar thermal collectors.

The Camel Solar absorber uses ultrasonic welding technology. This is done on the backside of the absorber. For the first time the heat transfer from the absorber Plate to the Copper register is a combination of conductivity and convection. This means the heat transfer is much better than the existing absorbers.

The characteristics and benefits of the Full plate absorber:

- The absorber is composed of 10 ultrasonically welded copper pipes.
- An aluminium absorber with a PVD (Physical vapour deposition) selective coating
- The new welding technique allows for an increase in the heat transfer and improves the co-efficient of efficiency.
- No waves and deformation allow for a very smooth absorber surface which means they are perfect for implementing onto roofs and facades.
- The absorbers can either be implemented in a flat plate collector or into a faced collector for mounting or replacing existing window panels.
This is Camel Solar’s new Evacuated Tube Collector. The collector is composed of 10 evacuated tubes with highly efficient selective coatings. The Glass tube has a PVD (physical vapour deposition) selective coating inside enhancing the absorption of the tube.

Inside the glass tube are U type copper pipes. These pipes are welded to an additional absorber. This absorber has its own patented selective coating increasing the heat transfer to the copper pipes and intern to the heat transfer fluid.

The U type copper pipes join two separate manifolds which are carefully placed in an anodized aluminum box and insulated with a high density rock wall.

Combining the latest research and technology this is one of the most efficient collectors on the market today and has received Solar Keymark Certification.

The Collector is perfect for domestic, commercial and industrial applications with a stagnation temperature of 250°C. Clients are using these panels for swimming pool applications, heating pools past 30°C without any other form of energy.

General Specifications

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Camel Solar Ltd Veliko Vlahovic 18 (mezanin) 1000 Skopje Republic of Macedonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Collector</td>
<td>CS Vacuum 10</td>
</tr>
<tr>
<td>Year of Production</td>
<td>2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions of Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Area</td>
</tr>
<tr>
<td>Aperture Area</td>
</tr>
<tr>
<td>Absorber Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Type</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Sealing Material</td>
</tr>
<tr>
<td>Collector Mounting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Absorption</td>
</tr>
<tr>
<td>Emittance</td>
</tr>
<tr>
<td>Heat Transfer Fluid</td>
</tr>
<tr>
<td>Number of Absorber Tubes</td>
</tr>
<tr>
<td>Number of Connections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Transmittance</td>
</tr>
<tr>
<td>Outer Diameter Glass Tube</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
</tr>
<tr>
<td>Thickness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagnation Temperature</td>
</tr>
<tr>
<td>Max. Operating Pressure</td>
</tr>
<tr>
<td>Heat Transfer Fluid</td>
</tr>
</tbody>
</table>
This is Camel Solar's new Evacuated Tube Collector. The collector is composed of 15 evacuated tubes with highly efficient selective coatings. The Glass tube has a PVD (physical vapour deposition) selective coating inside enhancing the absorption of the tube.

Inside the glass tube are U type copper pipes. These pipes are welded to an additional absorber. This absorber has its own patented selective coating increasing the heat transfer to the copper pipes and intern to the heat transfer fluid.

The U type copper pipes join two separate manifolds which are carefully placed in an anodized aluminum box and insulated with a high density rock wall.

Combining the latest research and technology this is one of the most efficient collectors on the market today and has received Solar Keymark Certification.

The Collector is perfect for domestic, commercial and industrial applications with a stagnation temperature of 250°C. Clients are using these panels for swimming pool applications, heating pools past 30°C without any other form of energy.

General Specifications

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>CamelSolar Ltd VelikoVlahovic 18 (mezanin) 1000 Skopje Republic of Macedonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Collector</td>
<td>CS Vacuum 15</td>
</tr>
<tr>
<td>Year of Production</td>
<td>2011</td>
</tr>
</tbody>
</table>

Dimensions of Collector

Gross Area	2.35 m²
Aperture Area	1.42 m²
Absorber Area	1.21 m²

Technical Figures

<table>
<thead>
<tr>
<th>Collector type</th>
<th>Evacuated Tubular Collector With Direct Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1990 mm (Determined by Test Lab)</td>
</tr>
<tr>
<td>Width</td>
<td>1190 mm (Determined by Test Lab)</td>
</tr>
<tr>
<td>Height</td>
<td>158 mm (Determined by Test Lab)</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminium Frame + Manifold</td>
</tr>
<tr>
<td>Weight</td>
<td>45 kg</td>
</tr>
<tr>
<td>Sealing Material</td>
<td>Rubber</td>
</tr>
<tr>
<td>Collector Mounting</td>
<td>On Roof, Flat Roof</td>
</tr>
</tbody>
</table>

Absorber

<table>
<thead>
<tr>
<th>Material</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td>0.92 - 0.96</td>
</tr>
<tr>
<td>Emittance</td>
<td>0.04 - 0.06</td>
</tr>
<tr>
<td>Heat Transfer Fluid</td>
<td>2.95 Litres</td>
</tr>
<tr>
<td>Number of Absorber Tubes</td>
<td>15</td>
</tr>
<tr>
<td>Number of Connections</td>
<td>2</td>
</tr>
</tbody>
</table>

Glass

<table>
<thead>
<tr>
<th>Material</th>
<th>High Borosilicate Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmittance</td>
<td>0.92</td>
</tr>
<tr>
<td>Outer Diameter Glass Tube</td>
<td>58mm</td>
</tr>
</tbody>
</table>

Thermal insulation

<table>
<thead>
<tr>
<th>Material</th>
<th>Rock Wool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Conductivity</td>
<td>0.035 sw/(mK)</td>
</tr>
<tr>
<td>Thickness</td>
<td>20 mm</td>
</tr>
</tbody>
</table>

Limits

<table>
<thead>
<tr>
<th>Stagnation Temperature</th>
<th>250 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Operating Pressure</td>
<td>10 bar</td>
</tr>
<tr>
<td>Heat Transfer Fluid</td>
<td>Glycol / Water Mixture</td>
</tr>
</tbody>
</table>
Technical Characteristics
Flat Plate 2.0-2

The CS Flat Plate collector is composed of a special façade full-plate absorber, coated with high quality, selective PVD (physical vapour deposition) coating.

The absorber sheet is then welded to a register comprising of 9 copper pipes. The absorber is welded using latest welding techniques to improve the heat transfer from the absorber to the heat transfer fluid in the copper pipes.

The completed absorber is placed into an aluminium anodized frame box and isolated with high density rock wall rock wool.

The glass is solar glass which is tempered, iron-free anti-reflective. The low-soiling coating on the glass is anti-dust and anti-corrosive. It keeps the glass clear with the same optical characteristics, which means that it can effectively help clean itself.

The sealing between the casing and glass is done using high temperature resistant silicone, for an attractive finish and minimal heat loss.

Efficiency Curve

General Specifications

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Camel Solar Ltd Veljko Vlahovic 18 (mezanin) 1000 Skopje Republic of Macedonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Collector</td>
<td>Cs Full Plate 2.0-2</td>
</tr>
<tr>
<td>Year of Production</td>
<td>2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions of Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Area</td>
</tr>
<tr>
<td>Aperture Area</td>
</tr>
<tr>
<td>Absorber Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Type</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Sealing Material</td>
</tr>
<tr>
<td>Collector Mounting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absorber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Absorption</td>
</tr>
<tr>
<td>Emittance</td>
</tr>
<tr>
<td>Heat Transfer Fluid</td>
</tr>
<tr>
<td>Number of Absorber Tubes</td>
</tr>
<tr>
<td>Number of Connections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Transmittance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
</tr>
<tr>
<td>Thickness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagnation Temperature</td>
</tr>
<tr>
<td>Max. Operating Pressure</td>
</tr>
<tr>
<td>Heat Transfer Fluid</td>
</tr>
</tbody>
</table>
Technical Characteristics
Flat Plate 2.0-4

The CS Flat Plate collector is composed of a special façade full-plate absorber, coated with high quality, selective PVD (physical vapour deposition) coating.

The absorber sheet is then welded to a register comprising of 10 copper pipes. The absorber is welded using latest welding techniques to improve the heat transfer from the absorber to the heat transfer fluid in the copper pipes.

The completed absorber is placed into an aluminium anodized frame box and isolated with high density rock wall rock wool.

The glass is solar glass which is tempered, iron-free anti-reflective. The low-soiling coating on the glass is anti-dust and anti-corrosive. It keeps the glass clear with the same optical characteristics, which means that it can effectively help clean itself.

The sealing between the casing and glass is done using high temperature resistant silicone, for an attractive finish and minimal heat loss.

Efficiency Curve

1 - Aluminium Frame | 2 - Silicone Seal | 3 - Thermal Sidewall Insulation | 4 - Thermal Insulation | 5 - Copper Tubes | 6 - Glass | 7 - Aluminium Back | 8 - Absorber
Technical Characteristics

Façade

The Façade Collector has seamless connections. The Collector is manufactured using the highest quality materials and the transfer of heat from the absorber to the copper pipes below is optimized using new welding techniques and latest research and development.

The facade module uses the latest absorber technology with one single absorber. This absorber has no welding lines allowing for a 6-8% increase in its efficiency.

The complete full-plate absorber is welded to a copper register comprising of 10 copper pipes and is then placed in a new Aluminium frame. Behind the window module is high density rock wool and the decorative plate, for efficiency and style.

The glass is solar glass which is tempered, iron-free anti-reflective. The low-soiling coating on the glass is anti-dust and anti-corrosive. It keeps the glass clear with the same optical characteristics, which means that it can effectively help clean itself.

These solar thermal collectors are designed to be integrated and fully functional, using the solar radiation from the sun and transferring that heat energy to heat domestic, commercial and industrial application.

Efficiency Curve

General Specifications

Manufacturer
Camel Solar Ltd Veljko Vlahovic 18 (mezanin) 1000 Skopje Republic of Macedonia

Type of Collector
Cs Full Plate 2.0-4

Year of Production
2012

Dimensions of Collector
Gross Area
2.02 m²
Aperture Area
1.83 m²
Absorber Area
1.83 m²

Technical Figures
Collector Type
Flat Plate Collector
Length
2005 mm (Determined by Test Lab)
Width
1005 mm (Determined by Test Lab)
Height
85 mm (Determined by Test Lab)
Material
Aluminium
Weight
33 kg
Sealing Material
Silicon
Collector Mounting
On Roof, Flat Roof

Absorber
Material
Aluminium Sheet and Copper Piping
Absorption
0.95
Emittance
0.05
Heat Transfer Fluid
1.5 Litres
Number of Absorber Tubes
10
Number of Connections
4

Glass
Material
Tempered Low Iron Glass
Transmittance
0.92

Thermal insulation
Material
Rock Wool
Thermal Conductivity
0.035w/(mK)
Thickness
50 mm

Limits
Stagnation Temperature
197 °C
Max. Operating Pressure
10 bar
Heat Transfer Fluid
Glycol / Water Mixture

1 - Aluminium Manifold | 2 - Rubber Seal | 3 - Thermal Sidewall Insulation | 4 - Absorber | 5 - Glass
Camel Solars Thermosyphon system is made up of a Camel Solar 0.4 flat plate collector and a camel solar hot water cylinder. Camel Solars Thermosyphon system operates under mains water pressure, thus providing unlimited installation options.

The CS Flat Plate collector is composed of a special façade full-plate absorber, coated with high quality, selective PVD (physical vapour deposition) coating.

The absorber sheet is then welded to a register comprising of 10 copper pipes. The absorber is welded using latest welding techniques to improve the heat transfer from the absorber to the heat transfer fluid in the copper pipes.

The completed absorber is placed into an aluminium anodized frame box and isolated with high density rock wall rock wool.

The glass is solar glass which is tempered, iron-free anti-reflective. The low-soiling coating on the glass is anti-dust and anti-corrosive. It keeps the glass clear with the same optical characteristics, which means that it can effectively help clean itself.

The sealing between the casing and glass is done using high temperature resistant silicone, for an attractive finish and minimal heat loss.

Camel solars most commonly used configurations are as follows:
- CS 120 indirect water heater with 2m² collector
- CS 150 indirect water heater with 2.5m² collector

A Supplementary electric heating element is available as an extra if necessary for additional water heating.

Technical Specifications

Dimensions of Collector
- Gross Area: 2.02 m²
- Aperture Area: 1.83 m²
- Absorber Area: 1.83 m²

Technical Figures
- Collector Type: Flat Plate Collector
- Length: 2005 mm (Determined by Test Lab)
- Width: 1005 mm (Determined by Test Lab)
- Height: 85 mm (Determined by Test Lab)
- Material: Aluminium
- Weight: 33 kg
- Sealing Material: Silicon
- Collector Mounting: On Roof, Flat Roof
- Collector Type
- Absorber Material: Aluminium Sheet and Copper Piping
- Absorption: 0.95
- Emittance: 0.05
- Heat Transfer Fluid: 1.5 Litres
- Number of Absorber Tubes: 10
- Number of Connections: 4
- Glass Material: Tempered Low Iron Glass
- Transmittance: 0.92
- Thermal Insulation Material: Rockwool
- Thermal Conductivity: 0.035W/(mK)
- Thickness: 50 mm
- Limits
- Stagnation Temperature: 197 °C
- Max. Operating Pressure: 10 bar
- Water Heater Models
- Model: TS120C(CR)F(S) / TS150C(CR)F(S)
- Rated volume: 120 Litres / 150 Litres
- Rated voltage: 230 V / 230 V
- Rated power: 1.5 kW / 1.5 kW
- Rated pressure: 6 bar / 6 bar
- Surface of the heat exchanger: 0.59 m² / 0.68 m²
- Minimum insulation thickness: 85 mm / 85 mm
- Camel Solar flexible pipe insulation thickness: 13 mm / 13 mm
Case Studies

Name Of project: Parrot House
Type of project: Domestic swimming Pool
Size of Pool: 11m x 6m x 1.5m = 99m³
Size of Storage: 250 litres
Panel Type: Flat Plate Collector
Installed Equipment: 25 Flat Plate Collectors

The Swimming pool is heated from April to October by the solar thermal system which produces 30kw.

Name Of project: Sport Center Trajkovski
Type of project: Swimming pool Complex
Size of Pool: 33m x 25m x 2m = 1650m³
Panel Type: Evacuated 15 tube
Equipment installed: 190 Evacuated Tube Collectors

The swimming pool is heated throughout the year by the Solar thermal system which produces 250-300kw.

Name of Project: Apartment Complex Soravia
Type of Project: Domestic hot water
Size of Storage: 14000 litres
Panel Type: Evacuated 15 tube
Equipment installed: 80 Evacuated Tube Collectors

The apartment Hot water is heated throughout the year by the solar thermal system which produces 100-120kw.

Name of project: Queens Hotel
Type of project: Commercial Hot Water
Size of Storage: 1000 litres
Panel Type: Evacuated CS15 Tube
Installed Equipment: 24 Evacuated Tube Collectors

Luxurious four star hotel Queens, with 30 rooms and restaurants, located in the very center of the city of Skopje.

The hotel is heated throughout the year by the solar thermal system which produces 30-36kW.

Name Of project: Oxted Place
Type of project: Domestic Swimming Pool
Size of Pool: 5m x 3m x 1.5m = 19.5m³
Panel Type: Façade
Equipment installed: Façade

The swimming pool is heated throughout the year by the solar thermal system which produces 12-15kw.

Name of Project: Camel Solar Factory
Type of Project: Commercial factory
Size of Storage: 7200 litres
Panel Type: Evacuated tube, flat plate, facade
Equipment installed: 3 x 78 evacuated tube collectors 18 x flat plate collectors 9 x facade collectors.

The factory has under floor heating which is done via the solar collectors and has backup heat pumps. The solar thermal system produces
Solar Keymark

Camel Solar have received the Solar Keymark certification and Camel Solar products are listed on the Solar Keymark international database. This is the European label for quality.

Building Regulations

All new domestic and commercial properties must obtain an Energy Performance Certificate (EPC) rating.

- Energy inspectors calculate the EPC rating by detailing the energy efficiency and environmental impact of a property.
- The higher the rating, the more energy efficient the property is. The key elements considered in calculating efficiency are: windows, walls, roofs, floors, main heating, heating controls, secondary heating, hot water and lighting.
- The installation of solar thermal collectors increases efficiency and improves EPC ratings on properties, reducing fuel bills, meeting modern building requirements and improving the features of the building.
- The social responsibility to integrate solar panels can be seen by government incentives and feed-in tariffs, to encourage consumers to consider this efficient form of energy generation.
- Approximately 28% of the UK’s CO2 emissions come from domestic homes and around 49% of the energy demand of the EU comes from the heating and cooling sector. Solar energy is effective not only for the home, but also for the planet.

Renewable Heat Incentive

What is the RHI?

The renewable heat incentive is a payment scheme established for those generating heat from a renewable source of energy. The RHI has been set up in the UK by the government to help us become more sustainable through reducing our energy bills but also helping the government to meet their CO2 emission targets for 2020.

Benefits?

- Reduced dependence on Fossil Fuels such as oil and gas, both of which are becoming increasingly expensive year-on-year.
- For commercial installation you will be paid up to 8.5p/kWhr for the hot water and heat you generate using the Camel Solar thermal system.
- The RHI payout will last for 20 years from the day that it is registered and will be constantly monitored with inflation.

Will this shorten the payback period and cover installation costs?

- The RHI does help reduce the payback period making it more attractive to consumers.
- We estimate at Camel Solar that many consumers will gain enough return from the tariffs to cover their installation costs within an estimated period of 5-10 years.

Investing in Camel Solar thermal and other energy saving products can significantly reduce a company’s energy bills, through reduced operational costs and incentives. This also reduces a company’s Climate Change Levy, creating savings year upon year.
United Kingdom Office
The Center
201-203 London Road
East Grinstead
West Sussex RH19 1HA
United Kingdom
Tel: 44 (0) 1342 310 400
Fax: 44 (0) 1342 310 401
Email: aet@flexiblespace.com

Hong Kong Office
Unit 2707, The Center
99 Queen’s Road Central
Hong Kong
Tel: (852) 2575 2181
Fax: (852) 2575 0968
Email: aet@netvigator.com

Shanghai Office
Suite 1612 - 1613, SPIG Tower
No. 358, DongdamingRoad
Hongkou District
Shanghai, China (200080)
Tel: (86) 21 6180 7068
Fax: (86) 21 6180 7065
Email: info@aet.com.cn

Beijing Office
17/F Hyundai Motor Tower
38 Xiaoyun Road
Chaoyang District
Beijing, China (10027)
Tel: (86) 10 6410 8417
Fax: (86) 10 8453 9218
www.flexiblespace.com
www.aet.com.cn

Macedonia Factory
Camel Solar
Kacanicki pat bb
1000 skopje
Macedonia
+389 70 205 635
Email: info@camel-solar.com